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Vi. THEL = R + R ﬁBaYa THEORY

l. Introduction
In this chapter I_investigate the theory of gravity based om

the Lagrangian,

5 s _fc At aB v
L=-5 R 16waG R 8y RE T Ly (L

This theory has been proposed and investigated independéntly by Fairchild
and by Mansouri and Chang. I begiﬁ‘checking out the criteria listed in
the previous chapter. The prbcess is far from complete and work is still
in progress. |

| In Section 2, I start by writing out the field equations. They in-
volve no higher than first derivatiﬁes of the frame and second derivatives

of the connection and are linear in the second derivatives of the connection.

Then I rederive the identities which guarantee the Noether comservation

laws of energy-momentum and angular momentum.’ Following that I report on

the status of Isenberg's and my work on finding an initial value for-

mulation of the theory. We have divided the field equétions into initial

Qalue constraints and evolution equations but have not yet completed the
préservation of the constraints. Next, i repeat Fairchiid's discussion
of the Newtonian limit and give reasons why it is insufficient in its
treatment of the t&rsion field. Hence, more work is needed on the
Newtonian limit. Finally, I point out that the spatially flat Friedmann-—
Robertson~Walker solution of Einstein's theory with p = %»p'aqd Zero

torsion is also an exact solution of this theory, thus providing an

exaﬁple of a cosmolegical solution.
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In Section 3, I present a Birkhoff theorem proved by Ramaswamy and

myself. Tt shows that the unique 0(3)-spherically syﬁmetric vacuum

solution to this theory is the Schwarzschild metric and zero torsiom.

"This shows that if the gravitational field of the solar system were

precisely spherically symmetric (including reflection), then the theory
with Lagrangian (1) would make the same prédictions for solar system

experiments as does Einstein's theory. A stronger statement about the

'predictions of this theory for solar system experiments can be made only

after checking the stability of the Schwarzschild solution ﬁnder pertur—
bations involving torsion. The Birkhoff theorem-also implies that
Minkowski space with zero torsion is tﬁe locally unique vacuum solution
which is spatially homogeneous, isotropic and parityéinvariant. Thus

Minkowski space serves as a ground state of the gravitational field.
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2. Automatic Noether Conservation Laws, Initial
Value Formulation, ete.

In the Lagrangian,

fic = fic 2% aB yé

R - R
16HL2 161TaG BYS T o

L=~5 + Ly (1)

3,1/2

G is a new dimensionless coupling

constant (which I regard as a gravitational fine structure constant), LM
is the matter Lagrangian minimally coupled to the Cartan connection, and

the gravitational variables are chosen as the components of the orthonormal

i-form frame, e“a, and the mixed components of the Cartan connection,
o .
T aa’
This Lagrangian (1) is the special case.of the Lagrangian (V.3.109)

in which

a, = l/aG, ' . (2)

Hence, the field equations may be obtained from equations (V.3.112) and
(V.3.113). The variation with respect to e“a yields the Einstein equation,

2 .
1 a skiuv 5 _ 81k a
RKAua ~ %% B Rkkuv) e Yo

F - s ax @M

. (3)

2, :
where ¥ = L /uG. The variation with respect to r¢ a vields the Cartan

B
equation,
' 2
=19 [a bl 2B ab _ 87[ B a
2 g Vb(e 5 ) - s 4y VbR e - Fe S 0 . (4)
In the vacuum, LM =0, t 2 -0 and SS & - o.
: o
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it is easy to verify that any vacuum sclution of the Einstein

theorwv,
G =0, ' (3)

is also a solution of equations (3) and (4) in vacuum with zero torsiom.
This shows that the theory based on Lagrangian - (1) is consistent. What

is more, Debney, Fairchild and Siklos have proved that in vacuum, in

‘the absence of torsion, equatiomns (3) and (4) are exactly equivalent to

equation (5), i.e. they have the same solution sets. Note that Debney,

Fairchild and Siklos take-"vacuum" to mean torsion-free as well as no

matter. I take it to mean only tﬁat there are no matter fields present,
By Theorem V.3, this theory has automatic Noether conservation laws.

I first discuss the requisite identities. For ease of reference, it is

- useful to introduce the tensors

Elua " ﬁcé .&aa, - (6)
81l - : .
2 a _ fic  ,akApa 1 a AKApY 2 _ -
E o S 4waG ® KAMG % % R RKAuv) : ' (7
ctta._ fic ng v, (e [a e b]) (8)
o , 2 b o 8 _
4nl .
- _ Hc ag _,a B R4 a _ 8 By a,
8ﬂL2 ) o X o + A 6'?& Aa - eY ) (9)
‘e a B 3 8 a 8 By a
= - (Q Q" e " 4+Q . g e ), (10)
8ﬂL2 o ) o Sa Y
28 a _ ke ~B ab ‘
¢ a = 7 % 2 VbR ! ' (11)
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So the field equations read

E + E =t ", (12)

o a % (13)

To derive the energy-momentum conservation law, I begin with the

Bianchi identity,

VR = O: ' (14)

which may also be written as

A~ ~0B

AC”B

0= VaR be f VbR, ca + VCR ab" (15)
. s a c .
Contracting with e e, e =~ yields
o B Y
0=~V -7 +7 (e B
.ay by ey

a b,.2aB a b, .2aB a b c
[Va(eOL eq YIR by [Vb(ea eB YIR va [Vc(ea ?B )]eY R
cyna eyzb cua
+ (VaeY )R . + (VbeY )R . (VceY IR
~a ~a

- - fa _ bly;708
=- 29,6 20V (e T e DIRT,  + 26 Q7 ., | (16)

where I have used equation (V.3.114). Thus,

ia 1
VaE Y =3

B Sz Lgld

o By§ T RCH an

AaB
- ab
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Next by direct computation

2 a fic ~kAba, a

V.E y =S o [V R ?RKka
+ i{’d‘b"“(vaeyc)ﬁdbc +"‘K7‘ba eYc Rove
—. %(VaéYa)i{K)\bd ARK)\bd __%_ eYc I{K?\ba VCARK}\b;g,]
= AESG [(Vaﬁaaba)ﬁasvb )
LECSRE WS s -ﬁxlbd)vaeYc]-
= %—CZBQG ﬁqBYG + Ezaé éaYa, - ' (18)

where the second step uses the Bianchi identity (15) and the third step

uses

_ d d
= - - = v
Qcya f QaYc Acya Aan Bed Vaey + 8ad ceY ) (19)

The identities (17) and (18) together with the field equations (12) and

(13) guarantee the conservation of energy-momentum:

v r =%SB6§°‘ +e b

ay a Byd o vé8® (20)

To derive the angular momentum conservation law, I use the Riced

identity to compute

fa bl_1
, Vavb(eu eg )= >

-z @R -Ry=-2@ -8, (21) -
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or
v C = E ~ E . ' (22)

On the other hand, again using the Riceci identity,

vavbiiﬁuab . %-(iacab ﬁBqu'+ ibcab ﬁﬁﬁac
) iiYBab ﬁwab "ﬁYoaab ﬁBYab)
"0, - (23)
or
Vaczsaa_= 0 = EZBG, - Ezag' (24)

The identities (22) and (24) together with the field equations (12) and

(13) guarantee the conservation of angular,mpmentﬁm:

v S = t -t . ‘ : _ {25)

S ' (26)

o] =-C . . 27

. o . . . s P
as a spin tensor for 8 a From this point of view the field equations
may be written as

2 .
. a8 _ 81L a., _a '
4= hc V(tu MR | (28)
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27a '
g ab _ G B a B ay
VR T =-s g (8 o ). _ (29)

Equation (28) is the field equation for.eaa while (29) is the field

i o
equation for '

Pa

Alternatively, it.may be useful to interpret GBua as a tensorial

geometric manifestation of the orbital angular momentum, gsince from

_equations (29) and (23) it follows that,

(30)

Thus -spin plus o are conserved.

Isenberg and I have begun to investigate the initial #alue
formulation of this theory in the wvacuum. By inspection, the vacuum
Lagrangian (equation (1) with LH = 0) an& the vacuum Einstein equations

(equation (3) with taa = 0) are both strictly local functions of e“a,

o o
r Ba’ and 8. T

B a

o

; while the vacuum Cartan equations (equation (4) with

Ba
= 0) are strictly local functions of Saa, abe“ , ™ @

5 a ga’ BBF Ba *

and 8 3 " which are linear in acabr“ Since the Lagrangian contains

c b Ba Ra”

no derivatives of Gua, the components of the frame, Baa,_play_the role of

Lagrange multipliers, and all 16 of the Einstein equations,
g2=gr?+8" %<0, _(3D)

are initial value constraiats.

Further examination of the Lagrangian shows that-it depends on the
connection only through the curvature. Hence the only componeﬁts of the
connection which have time derivatives in the Légrangian are TaBa for

a = 1,2,3. As a consequence, these are the only gravitational variables

" which have conjugate momenta in a canonical formulation. They are also
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the only gravitational variables which have second time derivatives in
the Cartan equations,

+ C = 0. (32)

Their dynamic equations are the Cartan equations,

c?’ma = 0 with a = 1,2,3. (33)

The remaining Cartan equations;
C = 0, ‘ (34)

are initial value constraints.
To complete the verification that the vacuum theory has a good
initial value formulation, it remains to check that the constraints (31)

and (34) are preserved in time. The Cartan constraints (34) are preserved

by virtue of the identity,

vacm = EBE - Eus . : (35)

which follows from (22) and (24). The Einstein constraints (31) with

a=0 are preserved by virture of the identity,

ve®=2L1c¢
ay - 2

£ a ~a a o
o R Bya + Ea Q ya’ (36)

which follows from tl?) and (18). Examination of the space-space com—
ponents of.the Einstein constraints (équation (31) with o = 1;2,3 and
a-=1,2,3) shows that in principle, in a generic situation;.it_shquld be
possible teo solve these‘9 constraints for the 9 space—space_components of
the frame; a“a with o = 1,2;3 and a = 1,2,3. In fact, Isenberg and I have

shown that this is possible in vacuum for the metric sufficiently close to
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Minkowski‘and the torsion sufficiently'smgll. The ability to éolve a
constraint for a variable guarantees that the constraint is preserved.,
Zsénberg and I are pres;ntly-in the process of checking thét the remaining
"3 Iinst€in constraints (equation (31) w?th o =0 and a = 1,2,3) are pre-
servéd.

InAhis paper, Fai?child claims to check the Newtonian limit of the
theory with Lagrangian (1). He argues as follows: The Einstein equations

. (28) may be.writtep as

_ 8ul ' . '
éBoc = e (tue Tt qu), ' (37)‘
where
2
8nL e
Fc Vag -~ Cga T aBa
_ a c _ c _1 a A cY _ ey
=e, (Vak ge Vcl Ba) 2 gaB e.Y (VaA o Vcl a).
' (38)
Then T

o8 may be neglecte@ gince it is quadratic in the curvature and hencé
second order in the metric and torsion perturbations away from torsion-
free Minkowski space. If too + VOO igs identified as fhe-mass density then
- the Newtonian limit follows as in Einstein's theory.

- The first problem with this a;gument is that t00 + Voo is not the
mass density; t00 is! However, the argument could be salvaged if it could
be.shown that the torsion can be chosen sufficiehtly small so that vaB
is negligible.compared to tuB' The second problem is-that the argument
does not mention the Cartan equation.' One must check that orders in v/c

caa be consistently assigned to each component qf the metrie and torsion

perturbations so that not only does the G o equation reduce to Newton's
o}

eciaticns can be satisfied to lowest order. It may not be possible
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simultaneously to make the torsion sufficiently small so that vaB is
negligible compared to tuB and also to satisfy the Cartan equationms.
This is particularly crucial because when regarded as a function of the

metric and torsion, the Cartan equation contains third derivatives of

the metric. I believe this theory will have a good Newtonian limit,

but it is not proven. More work is needed.

Finally, T demonstrate that there is at least one cosmological
' Co 1. .
solution, namely the radiation dominated (p = 3-9), spatially flat,
Friedmann sclution to Einstein's theory with zero torsion. When the

torsion is zero, the field equations (3) and (4).reduce to

- s ~ ~cd - 8rL
Gab S cacbd R fie Lab (39)
27
~ ab G a
= -5
vatd fic Scd * , (40)

For a 4-dimensionally conformally flat metric, such as the Friedmann-—-

Robertson—Walker metric,

2

as? = a2 (—dn2 + ar® + 12 do? + 12 sin’8 d¢2), (41)

the Weyl tensor Cacbd is zero. Hence the Einstein equation (39) becomes

2
& = 8rL

ab  fc tab ? (42)

which is satisfied By any 4-dimensionally conformally flat solution of
Einstein's theory. But the Cartan equation (40) must also be satisfied.

Using a contracted Bianchi identity and then (42) it can be rewritten as

L 2ng 2
: G a ~ a «~ a _ 8nL - a T a
- = - = & -7
=3 fic Scd VdRc VcRd fic <Vdtc ctd ) (43)
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where

Ea=ta—-2]363tb. : (44)

This may be interpreted as a definition of the spin tensor or as a

restriction on the energy-momentum tensor. If the spin temnsor is set
to zero, and the energy-momentum tensor is chosen as that for a'perfect

fluid, then the restriction (43) reduces to
1 : .
P=3 p + constant. ] (45)

Thus the radiation-dominated, spatially flat, Friedmann cosmology with

zero torsion satisfies the field equations of Lagrangian (1).
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3.  Birkhoff Theorem

Sriram Ramaswamy‘and I have proved a Birkhoff theorem for the

vacuur Lagrangian,

L=~ s fic R - fic R0 ﬁB YG.

1
16wk 16ﬂuG Bys .

The theorem states,

The&ram VI.1 (Birkhoff Theorem):

Let the metric and Cartan connection on a region of spacetime be -
an 0(3)-spherically symmetric vacuum solution to the field equations
derived “rom Lagrangian (1}. .Then the connection has zero torsion, and

the metric 1s the Schwaraschild metric.

This theorem is analogous to Birkhoff's theorem fo; Einstein's theory.
Before giving the proof, I discuss its implications.

'First, this theorem should be compared with a result by Debmey,
Fairchild and Siklos (DFS). They have proved that im vacuum, in tﬂe
absence of torsion, this theory i§ exactly equivalent to Einstein's
theory in vacuum; i.e. the two restricted theories have the same solution
sets. (Note that these authors take "vaduum" to mean torsion-free

as well as matter~free. I take " vacuum" to mean only that there is

no matter present.) In contrast, in our Birkhoff thedrem, Ramaswamy and

I do not zssume that the torsion is zero. Instead, we assume 0(3)—sphérical
Syrmetry znd prove that the torsion is zero. Then the standard Birkhoff
theorem for\Eisntein's théory, in conjunction With the DFS reéult, shows
thaet zhe metric is Schwarzschild. In our proof we do not éctually quote

the D?S result; we rederive it.in the special case of 0(3)-spherical

SYImeITv.
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Second, unfortunately there is at present no verification that (1)

this theory has a good'Newtbnian limit, and (2) the Schwarzschild solution

»

is stable under non-spherical perturbations. If there were, then as dis-

"cusséd in Section V.2.b, our Birkhoff theorem would show that this theory

makes the same predictions about solar system experiments as does Einstein's
theory. Since the Schwarzschild solution is stable in Einstein's theory,

the DFS result shows that any non¥spherical perturbations which are un-

‘stable in this theory must involve a non-zero torsion field.

Third, I want to emphasize that our Birkhoff theorem assumes 0(3)-

spherical symmetry rather than just SO(3)-spherical symmetry; i.e. spatiél

reflections as well as rotation. This means that there is an action of
the group 0(3) on the spacetime manifold which leaves the metric and torsion

invariant and whose orbits are generically 2-spheres. For the metric and

any otlier symmetric rank two tensor, the assumptions of 0(3) and SO(3)

symmetry are equivalent. However, for tHe torsion, the inclusion of re-
flections as well as rotations reduces the number of torsion functions
from eight to four in equations (10-13) below.

In fact, wheﬁ the spherical symmetry assumption is qeakened from 0(3)
to-SO(B)s_the local uniqueness of the torsien-free Schwarzschild solution
breaks down in that there exist local SO(3)-spherically symmetric solutions
whose torsion is not space reversal invariant. I am able to demonstrate
the existence of a five parameter family of éuch solutions which are also
static (in the technical sense that the timelike killing vector is surface
orthogonal) bqt not time reversal invariant. This is done by (1) writing
cut the static, S0(3)-spherically symmetric field equations, (2) proving
that four of the eight torsion components vanish, and (3) checking that
thé resultant equations have an initial value formulation in the radial

cirection whose initial conditions are the values of the four remaining




i/_

267

torsion components and the value of one.metric function {(which fixes the
Schwarzschild mass when the.torsion ig zero). This proves the existence
of a five parameter family of solutions in the neighborhood of the

jnitial radial coordinate. I do not have any closed form expression for

these solutions and I have not yet checked the asymptotic form of these

fields to see if they are asympfotically flat,'

The existence of these parity non—-invariant solutions can-be under-
stood by considering the analogy with the Birkhoff theorem for the Einstein-
Maxwell theory. In that theory ;he unique 0(3)-spherically symmetric-
solution is the.Reissner—Nordstrom metric with a radial electric field.

When the spherical symmetry assumption is relaxed from 0(3) to S0(3),
radial magnetic fields are glso permitted.

if one regards Birkhoff's theorem as merely saying that every
spherically symmetric solution is static, then perhaps a Birkhoff theorem
for thé theory baéed oanagrangian (1) may éti}l exist for $0(3)-spherical
symetry.

Finally, as pointed out in Section V.3.f our Birkhoff theorem implies

that Minkowski space with zero torsion is the locally unique vacuum solution

which is spatially homogeneous, isotfopic and parity-invariant. This
follows becauselsuch a solution would have to be 0(3)-spherically symmetric
about every point. Thus Minkowski space serves as the ground state of the
gravitational field in tﬁis theory.-

I conclude this section and the thesis with the proof of the Birkhoff

theorem proven by Ramaswamy and myself.
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Proof of Theorem VI.1 (Birkhoff Theorem):

We first give an outline of our proof. After writing out the field

‘equations and Bianchi identities for a spherically symmetric system, we

note that the Einstein equations factor, yielding three cases. In two
of the cases, adding the Bianchi identities to the Cartan equations leads

to a contradiction. 1In the third case, subtracting the. Bianchi identities

_from the Cartan equations shows thatfthe Einstein and torsion tensors are

zZero. Birkhoff's tﬁeorem for Einstein's theory then implies that the
Schwarzschild metric is the unique solution. The details of the proof
follow,

In this proof, we take the signature of the métric to be (-1,+1,+1,+1).

Recall that the Bianchi identities are

abed a

VcRsuab = 0, (2)
the vacuum Einstein equations are
S o 8BY 1, g BYSy .
Guv x(R Byu R av " & guv R BY5R o Yy =0, (3
and the vacuum Cartan eduations are
c c c .6 c 8 | ~ ed :
A ap " A 8o + e, A 8s ~ eB A s + 4y vdRBa = 0, (%)

where y = Lz/aG.

The most general spherically symmetric metric can be written as

2 2 2 2A

ds” = - e ¢ dT" + e dR2 + rz(de2 + sin2

' 2

8 d¢7) , (5)
where ¢, A and x are arbitrary functions of R and T. We are allowing here
for the possibility that the Schwarzschild r is a bad ccordinate, by

mzking r an arbitrary function of good coordinates R and T. We write out

all tensors in the orthonormal frame, with basis one-forms,
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of = % ar , | (8
o =t ar )
6% = r a0, (8)
6% < r sine db . (9)

We impose 0(3)—spﬁerical symeetry on the Cartan connection by demanding
that the defect tensor be invariant under rotations and reflections, and
that the Christoffel symbols be'computed from the spherically symmetric
metric (5). The independent non-zero componeﬁts of the spherically

symmetric defect tensor are

T _

A RT ~ f(R,TY , | (10)

xT = h(R,T) (1)
RR ? ? ,

T _.,T _

Agg = X g = K®TD , (12)

R _ .,R :

where £, g, h, k are arbitrary functions of R and T. Adding the defect
tensor to the Christoffel symbols, we obtain the independent non¥zero

components of the Cartan connection:

T -A

- 1 =
Prgp=e o + f = V(,T) , (14
rl = 4+n = X(R,T) | (15
RR e by - ( b1 2 ( )

T T - -1 _
Fgg =T s =€ T F +k = Y@®R,TY , (16)

r..=T,, =-e v ' +g = WR,I , (L7)
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(18)

Dots (+) denote differentiation with respect to T, and primes {') denote

¢ifferentiation with respect to R.

The independent non-zero components of the Riemann tensor are

- txeMy - (vetyrie A

= §T¢T¢ = e_®r_1(Yr)ir+ W
= ﬁT¢R¢ = e_Ar_l(Yr)' + X0
=_§R¢T¢ =.e—®r—l(Wr)' + YV
= §R¢B¢ = g-Ar—l(Wr)' + YX
= ;—2 + Y2,~~ﬁ2

HI

1E

i

A

and the non-zero components of the Einstein tensor

G

[k

[k

[k

Gj}

TT

IR

RT

g0

1l

fl

M+ L,
-,

- 26,

2¢-1

G.. = C-H+A .

¢

]

are

(19) |
(20)
(21)
(22)
(23)

(24)

(25)
26)
(27)
(28)

(29)
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The independent Einstein equations (3) in vacuum are

2H+L - 4x(D2+C2 H2 G2 é L2 + % Az) = 0,

-2D + 8y (CD-HG)

n
o}

-2G + 8X (CD-H&) 0,

2C - L - 4X(D2+C2—H2—G2+ é 12 %—A?) = 0,

C—H+A+2X(L2—A2) = 0.
The independent Cartan equations (4) in vacuum are

-2(w+e"Ar'1r') + 4x{e'Ar‘2(r2A)' - 2 Y6+ 2WC] =

| —2(Y%e_¢r—lf) - 4x[e—®r—2(r2A)' + 2 YH-2WD] =

it AL ey ] = gyt A ore®yt + (cre™y

+ VG + XH + YL} =

—tu-vre T e 1] - e fe T re®) + (Gre™)

+ VC+ XD+ WL =0.
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(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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The independent Bianchi identities (2) éreA

e_Ar—z(rzL)'.+ 2YD~-2WH =20, : (39)

& — ) )
e 2y +2%-2we = o0, (40)

-

e M ey + (re® ) + VD + xC 4 YA (41)

]
<

e_gfhr_l[(CreQ)' + (DréA)'] + VH + XG + WA

il
o

(42)

Based upon equationé_(30—42), we now prove that the defect and

Einstein tensors are zero., First, the Einstein equations (30-34) can be

manipulated into the equivalent form:

G = D, ' _ ' (43)

61 - 4x(c-®)] = 0, | 4l
(H+C) [1L-4x(C-®W)] = 0, | | (45)
(A-LY+2(C~-H = 0, 7 (46)

(A+LY[1+8(C-1] = 0 . ' (47)

These equations split into three cases ,

Case

Czge

(4X)_1, so that G=D and L=—A=(4X)-l.

5
=
]

C-H = - (8071, so that G=D=0 , H=—C=(16X) 1,

and A-L = (&%) L.

C-H # - (8)()_l and C-H # (4X)_l, so that G=D=0, and A=-1=-2C=2H.
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Neﬁt, we compare the Cartan equations (35-38) with thé Bianchi
identitieg {39-42) in each of the three cases.

Case I: We add 4X times (41) to (37), and 4X times (42} to (38),
and use the conditions of case I on the resulting two equations to show
that Y=W=0. From the definitions (20) and (23) of C and H, this implies
¢=H=0, which contradicts C—H=(4X)_l, ruling out case I.

Case II: We add 4X times (39) to (35), and 4X times (40) to (36),
and use the conditions of case iI to sﬁow that Y=W=0. As before, this
implies C=H30, which éontradicts C~H=—(8X)-1,.ruling out case iI.

Case JII: We subtract 4X times (39) from (35), 4% timgs (40) from
(36), 4X times (41) from (37), and 4X times (42) from (38), and use the
conditions of case IIT as well as equatiomns (14-17) to show that f=g=h=k=0.

This implies that the defect and hence the torsion tensorsare zero. The

~conditions of case IIT directly imply that G=D"=2H+L = 2¢-L = C-H+A = 0.

This implies that the Einstein tensor, éomputed with torsion, is zero, but

since the torsion is zero, the Eimstein tens;r computed from the Christoffel
connection is also zero. Birkhoff's theorem for Einstein's theory then says that
the metric is the Schwarzschiid metric., This is, in faét, a solution since

with zero torsion, any solution to the vacuum field equations of Einstein's

. theory is a solution to equations (3) and (4) in vacuum. Hence the

Schwarzschild metric, with zero torsion, is the unique solution.

This completes the proof of our generalized Birkhoff theorem.

Q.E.D.




